
Software Risk Engineering
By

Barry Blesser and Derek Pilkington

© April 2000

In the conceptual stage of a project, management is typically interested in crude estimates to enable
go/no-go decisions relating to market windows, return-on-investment, and resource requirements.
During this phase, management usually tolerates high variance estimates in order to minimize the initial
engineering investment. The tolerance for variance reduces dramatically after management decides to
proceed with a project; development estimates now influence business financial and marketing plans.
Variance arises from uncertainty and risk, yet few developers and managers understand the principles
of Software Risk Engineering, or even have a language to communicate in appropriate terms.

The discipline of risk engineering evolved
primarily in large machine industries such as
power plants and aircraft manufacturing. This
discipline has a direct application to the high-tech
software development process. In this discussion,
we focus on the methods and consequences of an
idealized factoring of the development process to
optimize schedule and quality. All software de-
velopment projects contain two conceptual do-
mains: work and uncertainty.

Work Domain
The work domain is well known and under-

stood by developers and management. A given
collection of tasks will take a certain amount of
person-hours to reach closure. Work-tasks are
primarily those with little uncertainty about the
ultimate success and resulting properties.

Uncertainty of Estimate
Work-task uncertainty arises in the estimating

process, not in the work itself. Reducing this es-
timate variance requires a detailed architecture,
planning and modularization before estimation.
Typically, those providing an estimate must do so
in the form of a single number. In fact, the real
answer is a classic probability-density curve. For
example, a single well-defined task has a variance
in the following form; 5% chance of finishing in
3 days, 33% in 4 days, 50% in 5 days, etc. This is
the language of probability. With 1,000 such

tasks, a complete project will have very large
variances, perhaps a factor of two or more.

The variance will likely have a Log Normal
distribution, i.e. very long forward tails, as shown
in figure 1. The chance of completion at any
point along the horizontal time axis is the area
under the curve to the left.

O ptim istic V iew

with only a 5% chance

of sucess

Pessim istic V iew

with a 95% certainty
of sucess

Tim e

Figure 1

Such uncertainty is unacceptable to a manager
who needs “firm” dates to plan a marketing
launch and production. The developers confront
the choice of how to convert a distribution into a
single date or number. Should they report the
target schedule optimistically (corresponding to a
5% chance of success), or should they report the
target pessimistically (corresponding to a 95%
chance of success?) Since these numbers may
differ by a factor of two or more, the choice is
often an unspoken psychological one. If the de-

Software Risk Engineering V1.2

Email: bblesser@alum.mit.edu, dpilkington@consultmanagement.com

2

velopers want to do the project, they report the
schedule optimistically. For a distasteful project,
they report pessimistically.

Figure 2 illustrates this choice using the same
data as figure 1, only represented with the vertical
axis showing the percent chance of completion
against the horizontal time scale.

0%

25%

50%

75%

100%

O ptimistic View

only a 5% chance
of sucess

Pessim istic V iew

with a 95% certainty

of success

Tim e

Figure 2

Consider possible outcomes:

1. The estimate does not meet business needs;
management and developers negotiate. De-
velopers succumb to pressure to reduce the
estimate, picking a different point on the
probability curve as the estimate, ignoring the
reality of variance.

2. Management proceeds based on an optimistic
estimate, the project “drags on.” The business
suffers from delayed introduction or qual-
ity/features compromises made to meet deliv-
ery expectations.

3. The estimate exceeds business needs, man-
agement scraps the plan because of the poor
ROI, or because a window of opportunity
would be missed.

None of these scenarios is attractive since
they only have the illusion of informed decision
making. A true negotiation should deal with how
to reduce the variance, by increasing resources,
redefining features, etc. Alternately, the negotia-
tion should be an open discussion of the risks of
accepting certain points on the curve based on the
tolerance of the business and project to accept
certain levels of risk.

Uncertainty of Solution
The previous discussion focused on “uncer-

tainty of estimate” with an implicit assumption
that the tasks themselves were straightforward,
albeit of unknown effort. There is another type of
risk related to the development itself. The struc-
ture of a development project cannot take into ac-
count unforeseen problems. Developers tradi-
tionally call these surprises. Complex projects
often have many surprises, yet few managers
formalize the management of these unknowns.
Surprises can often dominate a schedule.

It is a very different skill to explore unknown
difficulties compared to inventing a solution for
known problems. For example, when trying to
make an operating system perform a complex
task, the developer must confront not knowing if
the OS can even do such a task. An operating
system is sufficiently complex that even its crea-
tors may not know if, or how, a given property
can be made to function. In the end, the software
solution may require only a few lines of code, but
it may require one day or three months to under-
stand what this code has to do. Worse yet, it
could be unknown if a solution even exists.
When no analogous working example of a similar
solution exists, the developer continually con-
fronts the fear of looking forever for a nonexist-
ent solution. (This is one of many cases where
the development process experiences non-
convergence.) We refer to this as the “uncer-
tainty of solution.” The “uncertainty of estima-
tion” and the “uncertainty of solution” are fun-
damentally different.

The developer’s tendency towards a concrete
psychology and management’s need for hard de-
terminism conspires to ignore unknowns. The
most tractable version of this issue involves the
debugging process. If the first 3 days of testing
yields 15 bugs per day, then one can reasonably
assert that there will be another 15 bugs on the
4th day of testing. The nature of the bugs is un-
known, but statistical patterns predict their occur-
rence. This is a simple example of managing un-
certainty. In a well-run project, a plot of bugs
(per unit of testing) determines the convergence
rate. By analogy, a given project will have a

Software Risk Engineering V1.2

Email: bblesser@alum.mit.edu, dpilkington@consultmanagement.com

3

certain surprise rate, even if one cannot make any
statement about the details of the surprises. There
are numerous other examples of these aspects of
the development process.

Optimizing Variance or Mean
The combination of “uncertainty of estima-

tion” and “uncertainty of surprise” provides a
clear explanation of why complex projects are
usually late. When managing a project and the
underlying probability density curve, we must be
aware of two very different attributes of that
curve: variance and mean. It is possible to opti-
mize one or the other. Reducing the variance
produces more clarity, while reducing the mean
has more economic utility. In some companies,
the value system implies that a reduced variance
(more reliable schedules) justifies extending the
delivery time. Extensive early planning and ex-
perimentation will narrow the probability density
curve but move it right. Conversely, other com-
panies push to accelerate the schedule even if the
uncertainty increases. This might correspond to
doing very little planning but using dynamic
management to handle the surprises. Figure 3 il-
lustrates these two choices compared with a mid-
dle model (modest amount of planning and re-
search conducted.)

Norm al pre-project research

Extensive pre-project research

T ime

Min im al pre-pro ject research

Note risk of long ta ils

Figure 3

Again, for those who are more comfortable
with a percentage chance of completion view we
present figure 4. The 95% percent chances of
completion for the three curves indicate the risk
due to too little pre-project research / planning.
In this example there exists a 2.4 to 1 time differ-
ence between the minimal and extensively

planned 95% chance points. In other words, an
extensively planned and researched project that
has a 95% chance of completion in 5 man years
could, if not researched sufficiently, take 12 man
year to reach the same chance of completion.

0%

25%

50%

75%

100%

Min imal pre-pro ject research.

Note the risk of long tails

Norm al pre-project research

Extensive

pre-project

research

T im e

Figure 4

The specific business situation should be the
determining factor in selecting an optimization.
A business running many projects concurrently
that is not dependent upon any single project for
financial success can afford to take risks and lean
towards a minimal pre-project phase. However, a
business that is running a single and financially
critical project is best served by a larger pre-
project phase.

Milestone Risk
Traditional project milestones offer a way to

avoid the pain of probability discussions. They
give management a secure feeling in their ability
to track progress; developers have a clear way to
demonstrate success and competence. However,
this does not solve the problem of “uncertainty of
estimation” and “uncertainty of surprise.” The
creation of traditional milestones embodies and
embeds a value trade-off system (optimization) of
the uncertainties. Unfortunately, hiding the un-
certainty does not allow anyone to see the optimi-
zation method. By default and often unaware,
developers and management agree on a metric
that raises the likelihood of all but the last mile-
stone being met since this produces the optimum
professional and emotional payoff; regretfully at
the expense of de-optimizing the final economic
result. Raising the probability of meeting the
early milestones is straightforward; postpone

Software Risk Engineering V1.2

Email: bblesser@alum.mit.edu, dpilkington@consultmanagement.com

4

high-risk tasks until the end. In other words, de-
lay the pain and only miss the last milestone of
product release and delivery. Consider the con-
verse, only the last milestone was successful, but
all of the early ones were late.

The hidden approach of back-loading risk is
the worst possible way to manage uncertainty.
We can illustrate this in two trivial examples.
Software developers may make an untested as-
sumption about a key piece of design and then
spend months writing the code. Hardware de-
signers may make the assumption of 100% accu-
racy in all the manufacturers data sheets and then
spend months developing a working board.
Changing either of these assumptions will result
in discarding a large amount of work. Delaying
risk until late in a project adds the danger of
having to discard large amounts of real work for
little or no gain. Hence, it should be obvious that
the optimum approach is to invest the right
amount of effort in risk reduction before doing
any “real” work. This is true even if it requires
throwaway experiments to prove the viability of
assumptions. Unfortunately, front-loading risk
will show the least amount of progress in a tradi-
tional milestone sequence because there is no
tangible “real” result. It is easier to show prog-
ress by doing the straightforward work.

A similar example involves the fact that a
large percentage of a development project can
take place in the tails (debugging and fine-
tuning), after the system is nominally working but
before achieving the required quality. It is often

more economical to build in a self-diagnosing
software architecture that dramatically reduces
the debugging time. Again, this is an example of
front-loading the issues that normally appear at
the end of a project – during the last milestone.

Conclusion
A traditional theory is that variance gradually

reduces as the project progresses, highest at the
beginning and lowest at the end. This assumes
that variability reduces as a function of the work
completed. However, it does not take into ac-
count the amount of risk that remains in a project.
Risk manifests itself as surprises. Developers and
managers should always keep in mind the well-
understood principle that the consequences of
surprises depend very heavily on when discov-
ered during the development process.

None of the techniques for risk optimization
is particularly complex but they often go against
the organizational biases of both developers and
management. Managers and developers need
education to appreciate the economic return of
handling risk explicitly. This kind of language is,
however, not a natural part of the professional life
of either developers or managers. While the eco-
nomic rewards (investment, productivity, and
time-to-market) provide a dramatic competitive
advantage, the logic of risk management does not
significantly reduce the effort required to over-
come human biases. In other words, the simplic-
ity of these concepts does not imply that a change
in behavior is easy.

Seminars are available on this and related topics. We educate technologists and managers
about the challenges of developing complex technologies, placing attention the language and
methods to express and understand risk and its implications. On May 12, 2000 we will launch
www.consultmanagement.com where you will find additional articles and learn about our pro-
fessional services and seminars.

http://www.consultmanagement.com/

	Work Domain
	Uncertainty of Estimate
	Uncertainty of Solution
	Optimizing Variance or Mean
	Milestone Risk
	Conclusion

